papers AI Learner
The Github is limit! Click to go to the new site.

Dual Co-Matching Network for Multi-choice Reading Comprehension

2019-01-27
Shuailiang Zhang, Hai Zhao, Yuwei Wu, Zhuosheng Zhang, Xi Zhou, Xiang Zhou

Abstract

Multi-choice reading comprehension is a challenging task that requires complex reasoning procedure. Given passage and question, a correct answer need to be selected from a set of candidate answers. In this paper, we propose \textbf{D}ual \textbf{C}o-\textbf{M}atching \textbf{N}etwork (\textbf{DCMN}) which model the relationship among passage, question and answer bidirectionally. Different from existing approaches which only calculate question-aware or option-aware passage representation, we calculate passage-aware question representation and passage-aware answer representation at the same time. To demonstrate the effectiveness of our model, we evaluate our model on a large-scale multiple choice machine reading comprehension dataset({\em i.e.} RACE). Experimental result show that our proposed model achieves new state-of-the-art results.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1901.09381

PDF

http://arxiv.org/pdf/1901.09381


Similar Posts

Comments