papers AI Learner
The Github is limit! Click to go to the new site.

High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel

2019-02-04
Brian L. DeCost, Bo Lei, Toby Francis, Elizabeth A. Holm

Abstract

We apply a deep convolutional neural network segmentation model to enable novel automated microstructure segmentation applications for complex microstructures typically evaluated manually and subjectively. We explore two microstructure segmentation tasks in an openly-available ultrahigh carbon steel microstructure dataset: segmenting cementite particles in the spheroidized matrix, and segmenting larger fields of view featuring grain boundary carbide, spheroidized particle matrix, particle-free grain boundary denuded zone, and Widmanst"atten cementite. We also demonstrate how to combine these data-driven microstructure segmentation models to obtain empirical cementite particle size and denuded zone width distributions from more complex micrographs containing multiple microconstituents. The full annotated dataset is available on materialsdata.nist.gov (https://materialsdata.nist.gov/handle/11256/964).

Abstract (translated by Google)
URL

http://arxiv.org/abs/1805.08693

PDF

http://arxiv.org/pdf/1805.08693


Similar Posts

Comments