papers AI Learner
The Github is limit! Click to go to the new site.

Funneled Bayesian Optimization for Design, Tuning and Control of Autonomous Systems

2019-02-05
Ruben Martinez-Cantin

Abstract

Bayesian optimization has become a fundamental global optimization algorithm in many problems where sample efficiency is of paramount importance. Recently, there has been proposed a large number of new applications in fields such as robotics, machine learning, experimental design, simulation, etc. In this paper, we focus on several problems that appear in robotics and autonomous systems: algorithm tuning, automatic control and intelligent design. All those problems can be mapped to global optimization problems. However, they become hard optimization problems. Bayesian optimization internally uses a probabilistic surrogate model (e.g.: Gaussian process) to learn from the process and reduce the number of samples required. In order to generalize to unknown functions in a black-box fashion, the common assumption is that the underlying function can be modeled with a stationary process. Nonstationary Gaussian process regression cannot generalize easily and it typically requires prior knowledge of the function. Some works have designed techniques to generalize Bayesian optimization to nonstationary functions in an indirect way, but using techniques originally designed for regression, where the objective is to improve the quality of the surrogate model everywhere. Instead optimization should focus on improving the surrogate model near the optimum. In this paper, we present a novel kernel function specially designed for Bayesian optimization, that allows nonstationary behavior of the surrogate model in an adaptive local region. In our experiments, we found that this new kernel results in an improved local search (exploitation), without penalizing the global search (exploration). We provide results in well-known benchmarks and real applications. The new method outperforms the state of the art in Bayesian optimization both in stationary and nonstationary problems.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1610.00366

PDF

http://arxiv.org/pdf/1610.00366


Similar Posts

Comments