papers AI Learner
The Github is limit! Click to go to the new site.

Centroid-based deep metric learning for speaker recognition

2019-02-06
Jixuan Wang, Kuan-Chieh Wang, Marc Law, Frank Rudzicz, Michael Brudno

Abstract

Speaker embedding models that utilize neural networks to map utterances to a space where distances reflect similarity between speakers have driven recent progress in the speaker recognition task. However, there is still a significant performance gap between recognizing speakers in the training set and unseen speakers. The latter case corresponds to the few-shot learning task, where a trained model is evaluated on unseen classes. Here, we optimize a speaker embedding model with prototypical network loss (PNL), a state-of-the-art approach for the few-shot image classification task. The resulting embedding model outperforms the state-of-the-art triplet loss based models in both speaker verification and identification tasks, for both seen and unseen speakers.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1902.02375

PDF

http://arxiv.org/pdf/1902.02375


Similar Posts

Comments