papers AI Learner
The Github is limit! Click to go to the new site.

Automatic Labeled LiDAR Data Generation based on Precise Human Model

2019-02-14
Wonjik Kim, Masayuki Tanaka, Masatoshi Okutomi, Yoko Sasaki

Abstract

Following improvements in deep neural networks, state-of-the-art networks have been proposed for human recognition using point clouds captured by LiDAR. However, the performance of these networks strongly depends on the training data. An issue with collecting training data is labeling. Labeling by humans is necessary to obtain the ground truth label; however, labeling requires huge costs. Therefore, we propose an automatic labeled data generation pipeline, for which we can change any parameters or data generation environments. Our approach uses a human model named Dhaiba and a background of Miraikan and consequently generated realistic artificial data. We present 500k+ data generated by the proposed pipeline. This paper also describes the specification of the pipeline and data details with evaluations of various approaches.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1902.05341

PDF

http://arxiv.org/pdf/1902.05341


Similar Posts

Comments