papers AI Learner
The Github is limit! Click to go to the new site.

Contextual Word Representations: A Contextual Introduction

2019-02-15
Noah A. Smith

Abstract

This introduction aims to tell the story of how we put words into computers. It is part of the story of the field of natural language processing (NLP), a branch of artificial intelligence. It targets a wide audience with a basic understanding of computer programming, but avoids a detailed mathematical treatment, and it does not present any algorithms. It also does not focus on any particular application of NLP such as translation, question answering, or information extraction. The ideas presented here were developed by many researchers over many decades, so the citations are not exhaustive but rather direct the reader to a handful of papers that are, in the author’s view, seminal. After reading this document, you should have a general understanding of word vectors (also known as word embeddings): why they exist, what problems they solve, where they come from, how they have changed over time, and what some of the open questions about them are. Readers already familiar with word vectors are advised to skip to Section 5 for the discussion of the most recent advance, contextual word vectors.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1902.06006

PDF

http://arxiv.org/pdf/1902.06006


Comments

Content