Abstract
Progress in video anomaly detection research is currently slowed by small datasets that lack a wide variety of activities as well as flawed evaluation criteria. This paper aims to help move this research effort forward by introducing a large and varied new dataset called Street Scene, as well as two new evaluation criteria that provide a better estimate of how an algorithm will perform in practice. In addition to the new dataset and evaluation criteria, we present two variations of a novel baseline video anomaly detection algorithm and show they are much more accurate on Street Scene than two state-of-the-art algorithms from the literature.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1902.05872