Abstract
Euler’s Elastica based unsupervised segmentation models have strong capability of completing the missing boundaries for existing objects in a clean image, but they are not working well for noisy images. This paper aims to establish a Euler’s Elastica based approach that properly deals with random noises to improve the segmentation performance for noisy images. We solve the corresponding optimization problem via using the progressive hedging algorithm (PHA) with a step length suggested by the alternating direction method of multipliers (ADMM). Technically, all the simplified convex versions of the subproblems derived from the major framework of PHA can be obtained by using the curvature weighted approach and the convex relaxation method. Then an alternating optimization strategy is applied with the merits of using some powerful accelerating techniques including the fast Fourier transform (FFT) and generalized soft threshold formulas. Extensive experiments have been conducted on both synthetic and real images, which validated some significant gains of the proposed segmentation models and demonstrated the advantages of the developed algorithm.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1902.07402