papers AI Learner
The Github is limit! Click to go to the new site.

Bayesian Anomaly Detection and Classification

2019-02-22
Ethan Roberts, Bruce A. Bassett, Michelle Lochner

Abstract

Statistical uncertainties are rarely incorporated in machine learning algorithms, especially for anomaly detection. Here we present the Bayesian Anomaly Detection And Classification (BADAC) formalism, which provides a unified statistical approach to classification and anomaly detection within a hierarchical Bayesian framework. BADAC deals with uncertainties by marginalising over the unknown, true, value of the data. Using simulated data with Gaussian noise, BADAC is shown to be superior to standard algorithms in both classification and anomaly detection performance in the presence of uncertainties, though with significantly increased computational cost. Additionally, BADAC provides well-calibrated classification probabilities, valuable for use in scientific pipelines. We show that BADAC can work in online mode and is fairly robust to model errors, which can be diagnosed through model-selection methods. In addition it can perform unsupervised new class detection and can naturally be extended to search for anomalous subsets of data. BADAC is therefore ideal where computational cost is not a limiting factor and statistical rigour is important. We discuss approximations to speed up BADAC, such as the use of Gaussian processes, and finally introduce a new metric, the Rank-Weighted Score (RWS), that is particularly suited to evaluating the ability of algorithms to detect anomalies.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1902.08627

PDF

http://arxiv.org/pdf/1902.08627


Similar Posts

Comments