papers AI Learner
The Github is limit! Click to go to the new site.

Convolutional Neural Networks for Automatic Meter Reading

2019-02-25
Rayson Laroca, Victor Barroso, Matheus A. Diniz, Gabriel R. Gonçalves, William Robson Schwartz, David Menotti

Abstract

In this paper, we tackle Automatic Meter Reading (AMR) by leveraging the high capability of Convolutional Neural Networks (CNNs). We design a two-stage approach that employs the Fast-YOLO object detector for counter detection and evaluates three different CNN-based approaches for counter recognition. In the AMR literature, most datasets are not available to the research community since the images belong to a service company. In this sense, we introduce a new public dataset, called UFPR-AMR dataset, with 2,000 fully and manually annotated images. This dataset is, to the best of our knowledge, three times larger than the largest public dataset found in the literature and contains a well-defined evaluation protocol to assist the development and evaluation of AMR methods. Furthermore, we propose the use of a data augmentation technique to generate a balanced training set with many more examples to train the CNN models for counter recognition. In the proposed dataset, impressive results were obtained and a detailed speed/accuracy trade-off evaluation of each model was performed. In a public dataset, state-of-the-art results were achieved using less than 200 images for training.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1902.09600

PDF

http://arxiv.org/pdf/1902.09600


Similar Posts

Comments