papers AI Learner
The Github is limit! Click to go to the new site.

Center Emphasized Visual Saliency and a Contrast-based Full Reference Image Quality Index

2019-02-26
Md Abu Layek, Sanjida Afroz, TaeChoong Chung, Eui-Nam Huh

Abstract

Objective image quality assessment (IQA) is imperative in the current multimedia-intensive world, in order to assess the visual quality of an image at close to a human level of ability. Many~parameters such as color intensity, structure, sharpness, contrast, presence of an object, etc., draw human attention to an image. Psychological vision research suggests that human vision is biased to the center area of an image and display screen. As a result, if the center part contains any visually salient information, it draws human attention even more and any distortion in that part will be better perceived than other parts. To the best of our knowledge, previous IQA methods have not considered this fact. In this paper, we propose a full reference image quality assessment (FR-IQA) approach using visual saliency and contrast; however, we give extra attention to the center by increasing the sensitivity of the similarity maps in that region. We evaluated our method on three large-scale popular benchmark databases used by most of the current IQA researchers (TID2008, CSIQ~and LIVE), having a total of 3345 distorted images with 28~different kinds of distortions. Our~method is compared with 13 state-of-the-art approaches. This comparison reveals the stronger correlation of our method with human-evaluated values. The prediction-of-quality score is consistent for distortion specific as well as distortion independent cases. Moreover, faster processing makes it applicable to any real-time application. The MATLAB code is publicly available to test the algorithm and can be found online at this http URL

Abstract (translated by Google)
URL

http://arxiv.org/abs/1812.11163

PDF

http://arxiv.org/pdf/1812.11163


Similar Posts

Comments