Abstract
Frame interpolation attempts to synthesise frames given one or more consecutive video frames. In recent years, deep learning approaches, and notably convolutional neural networks, have succeeded at tackling low- and high-level computer vision problems including frame interpolation. These techniques often tackle two problems, namely algorithm efficiency and reconstruction quality. In this paper, we present a multi-scale generative adversarial network for frame interpolation (\mbox{FIGAN}). To maximise the efficiency of our network, we propose a novel multi-scale residual estimation module where the predicted flow and synthesised frame are constructed in a coarse-to-fine fashion. To improve the quality of synthesised intermediate video frames, our network is jointly supervised at different levels with a perceptual loss function that consists of an adversarial and two content losses. We evaluate the proposed approach using a collection of 60fps videos from YouTube-8m. Our results improve the state-of-the-art accuracy and provide subjective visual quality comparable to the best performing interpolation method at x47 faster runtime.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1711.06045