papers AI Learner
The Github is limit! Click to go to the new site.

Generative Visual Dialogue System via Adaptive Reasoning and Weighted Likelihood Estimation

2019-02-26
Heming Zhang, Shalini Ghosh, Larry Heck, Stephen Walsh, Junting Zhang, Jie Zhang, C.-C. Jay Kuo

Abstract

The key challenge of generative Visual Dialogue (VD) systems is to respond to human queries with informative answers in natural and contiguous conversation flow. Traditional Maximum Likelihood Estimation (MLE)-based methods only learn from positive responses but ignore the negative responses, and consequently tend to yield safe or generic responses. To address this issue, we propose a novel training scheme in conjunction with weighted likelihood estimation (WLE) method. Furthermore, an adaptive multi-modal reasoning module is designed, to accommodate various dialogue scenarios automatically and select relevant information accordingly. The experimental results on the VisDial benchmark demonstrate the superiority of our proposed algorithm over other state-of-the-art approaches, with an improvement of 5.81% on recall@10.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1902.09818

PDF

http://arxiv.org/pdf/1902.09818


Similar Posts

Comments