papers AI Learner
The Github is limit! Click to go to the new site.

Private Center Points and Learning of Halfspaces

2019-02-27
Amos Beimel, Shay Moran, Kobbi Nissim, Uri Stemmer

Abstract

We present a private learner for halfspaces over an arbitrary finite domain XRd with sample complexity $mathrm{poly}(d,2^{\log^|X|}).Thebuildingblockforthislearnerisadifferentiallyprivatealgorithmforlocatinganapproximatecenterpointofm>\mathrm{poly}(d,2^{\log^|X|})pointsahighdimensionalgeneralizationofthemedianfunction.Ourconstructionestablishesarelationshipbetweenthesetwoproblemsthatisreminiscentoftherelationbetweenthemedianandlearningonedimensionalthresholds[Bunetal. FOCS15].Thisrelationshipsuggeststhattheproblemofprivatelylocatingacenterpointmayhavefurtherapplicationsinthedesignofdifferentiallyprivatealgorithms.Wealsoprovidealowerboundonthesamplecomplexityforprivatelyfindingapointintheconvexhull.Forapproximatedifferentialprivacy,weshowalowerboundofm=\Omega(d+\log^*|X|),whereasforpuredifferentialprivacym=\Omega(d\log|X|)$.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1902.10731

PDF

http://arxiv.org/pdf/1902.10731


Similar Posts

Comments