Abstract
We present a private learner for halfspaces over an arbitrary finite domain X⊂Rd with sample complexity $mathrm{poly}(d,2^{\log^|X|}).Thebuildingblockforthislearnerisadifferentiallyprivatealgorithmforlocatinganapproximatecenterpointofm>\mathrm{poly}(d,2^{\log^|X|})points–ahighdimensionalgeneralizationofthemedianfunction.Ourconstructionestablishesarelationshipbetweenthesetwoproblemsthatisreminiscentoftherelationbetweenthemedianandlearningone−dimensionalthresholds[Bunetal. FOCS‘15].Thisrelationshipsuggeststhattheproblemofprivatelylocatingacenterpointmayhavefurtherapplicationsinthedesignofdifferentiallyprivatealgorithms.Wealsoprovidealowerboundonthesamplecomplexityforprivatelyfindingapointintheconvexhull.Forapproximatedifferentialprivacy,weshowalowerboundofm=\Omega(d+\log^*|X|),whereasforpuredifferentialprivacym=\Omega(d\log|X|)$.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1902.10731