papers AI Learner
The Github is limit! Click to go to the new site.

FastFusionNet: New State-of-the-Art for DAWNBench SQuAD

2019-02-28
Felix Wu, Boyi Li, Lequn Wang, Ni Lao, John Blitzer, Kilian Q. Weinberger

Abstract

In this technical report, we introduce FastFusionNet, an efficient variant of FusionNet [12]. FusionNet is a high performing reading comprehension architecture, which was designed primarily for maximum retrieval accuracy with less regard towards computational requirements. For FastFusionNets we remove the expensive CoVe layers [21] and substitute the BiLSTMs with far more efficient SRU layers [19]. The resulting architecture obtains state-of-the-art results on DAWNBench [5] while achieving the lowest training and inference time on SQuAD [25] to-date. The code is available at https://github.com/felixgwu/FastFusionNet.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1902.11291

PDF

http://arxiv.org/pdf/1902.11291


Comments

Content