papers AI Learner
The Github is limit! Click to go to the new site.

Decoders Matter for Semantic Segmentation: Data-Dependent Decoding Enables Flexible Feature Aggregation

2019-03-05
Zhi Tian, Chunhua Shen, Tong He, Youliang Yan

Abstract

Recent semantic segmentation methods exploit encoder-decoder architectures to produce the desired pixel-wise segmentation prediction. The last layer of the decoders is typically a bilinear upsampling procedure to recover the final pixel-wise prediction. We empirically show that this oversimple and data-independent bilinear upsampling may lead to sub-optimal results. In this work, we propose a data-dependent upsampling (DUpsampling) to replace bilinear, which takes advantages of the redundancy in the label space of semantic segmentation and is able to recover the pixel-wise prediction from low-resolution outputs of CNNs. The main advantage of the new upsampling layer lies in that with a relatively lower-resolution feature map such as 116 or 132 of the input size, we can achieve even better segmentation accuracy, significantly reducing computation complexity. This is made possible by 1) the new upsampling layer’s much improved reconstruction capability; and more importantly 2) the DUpsampling based decoder’s flexibility in leveraging almost arbitrary combinations of the CNN encoders’ features. Experiments demonstrate that our proposed decoder outperforms the state-of-the-art decoder, with only 20\% of computation. Finally, without any post-processing, the framework equipped with our proposed decoder achieves new state-of-the-art performance on two datasets: 88.1\% mIOU on PASCAL VOC with 30\% computation of the previously best model; and 52.5\% mIOU on PASCAL Context.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1903.02120

PDF

http://arxiv.org/pdf/1903.02120


Similar Posts

Comments