papers AI Learner
The Github is limit! Click to go to the new site.

Using a Segmenting Description approach in Multiple Criteria Decision Aiding

2019-03-05
Milosz Kadzinski, Jan Badura, Jose Rui Figueira

Abstract

We propose a new method for analyzing a set of parameters in a multiple criteria ranking method. Unlike the existing techniques, we do not use any optimization technique, instead incorporating and extending a Segmenting Description approach. While considering a value-based preference disaggregation method, we demonstrate the usefulness of the introduced algorithm in a multi-purpose decision analysis exploiting a system of inequalities that models the Decision Maker’s preferences. Specifically, we discuss how it can be applied for verifying the consistency between the revealed and estimated preferences as well as for identifying the sources of potential incoherence. Moreover, we employ the method for conducting robustness analysis, i.e., discovering a set of all compatible parameter values and verifying the stability of suggested recommendation in view of multiplicity of feasible solutions. In addition, we make clear its suitability for generating arguments about the validity of outcomes and the role of particular criteria. We discuss the favorable characteristics of the Segmenting Description approach which enhance its suitability for use in Multiple Criteria Decision Aiding. These include keeping in memory an entire process of transforming a system of inequalities and avoiding the need for processing the inequalities contained in the basic system which is subsequently enriched with some hypothesis to be verified. The applicability of the proposed method is exemplified on a numerical study.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1903.01923

PDF

https://arxiv.org/pdf/1903.01923


Similar Posts

Comments