Abstract
This paper proposes an unified framework for efficiently spotting scene text in videos. The method localizes and tracks text in each frame, and recognizes each tracked text stream one-time. Specifically, we first train a spatial-temporal text detector for localizing text regions in the sequential frames. Secondly, a well-designed text tracker is trained for grouping the localized text regions into corresponding cropped text streams. To efficiently spot video text, we recognize each tracked text stream one-time with a text region quality scoring mechanism instead of identifying the cropped text regions one-by-one. Experiments on two public benchmarks demonstrate that our method achieves impressive performance.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1903.03299