Abstract
Motivated by the increasing appeal of robots in information-gathering missions, we study multi-agent path planning problems in which the agents must remain interconnected. We model an area by a topological graph specifying the movement and the connectivity constraints of the agents. We study the theoretical complexity of the reachability and the coverage problems of a fleet of connected agents on various classes of topological graphs. We establish the complexity of these problems on known classes, and introduce a new class called sight-moveable graphs which admit efficient algorithms.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1903.04300