papers AI Learner
The Github is limit! Click to go to the new site.

Formality Style Transfer with Hybrid Textual Annotations

2019-03-15
Ruochen Xu, Tao Ge, Furu Wei

Abstract

Formality style transformation is the task of modifying the formality of a given sentence without changing its content. Its challenge is the lack of large-scale sentence-aligned parallel data. In this paper, we propose an omnivorous model that takes parallel data and formality-classified data jointly to alleviate the data sparsity issue. We empirically demonstrate the effectiveness of our approach by achieving the state-of-art performance on a recently proposed benchmark dataset of formality transfer. Furthermore, our model can be readily adapted to other unsupervised text style transfer tasks like unsupervised sentiment transfer and achieve competitive results on three widely recognized benchmarks.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1903.06353

PDF

http://arxiv.org/pdf/1903.06353


Comments

Content