Abstract
Unsupervised Learning based monocular visual odometry (VO) has lately drawn significant attention for its potential in label-free leaning ability and robustness to camera parameters and environmental variations. However, partially due to the lack of drift correction technique, these methods are still by far less accurate than geometric approaches for large-scale odometry estimation. In this paper, we propose to leverage graph optimization and loop closure detection to overcome limitations of unsupervised learning based monocular visual odometry. To this end, we propose a hybrid VO system which combines an unsupervised monocular VO called NeuralBundler with a pose graph optimization back-end. NeuralBundler is a neural network architecture that uses temporal and spatial photometric loss as main supervision and generates a windowed pose graph consists of multi-view 6DoF constraints. We propose a novel pose cycle consistency loss to relieve the tensions in the windowed pose graph, leading to improved performance and robustness. In the back-end, a global pose graph is built from local and loop 6DoF constraints estimated by NeuralBundler and is optimized over SE(3). Empirical evaluation on the KITTI odometry dataset demonstrates that 1) NeuralBundler achieves state-of-the-art performance on unsupervised monocular VO estimation, and 2) our whole approach can achieve efficient loop closing and show favorable overall translational accuracy compared to established monocular SLAM systems.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1903.06315