papers AI Learner
The Github is limit! Click to go to the new site.

Generative Adversarial Networks: recent developments

2019-03-16
Maciej Zamorski, Adrian Zdobylak, Maciej Zięba, Jerzy Świątek

Abstract

In traditional generative modeling, good data representation is very often a base for a good machine learning model. It can be linked to good representations encoding more explanatory factors that are hidden in the original data. With the invention of Generative Adversarial Networks (GANs), a subclass of generative models that are able to learn representations in an unsupervised and semi-supervised fashion, we are now able to adversarially learn good mappings from a simple prior distribution to a target data distribution. This paper presents an overview of recent developments in GANs with a focus on learning latent space representations.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1903.12266

PDF

http://arxiv.org/pdf/1903.12266


Similar Posts

Comments