papers AI Learner
The Github is limit! Click to go to the new site.

Multi-View Graph Convolutional Network and Its Applications on Neuroimage Analysis for Parkinson's Disease

2019-03-17
Xi Sheryl Zhang, Lifang He, Kun Chen, Yuan Luo, Jiayu Zhou, Fei Wang

Abstract

Parkinson’s Disease (PD) is one of the most prevalent neurodegenerative diseases that affects tens of millions of Americans. PD is highly progressive and heterogeneous. Quite a few studies have been conducted in recent years on predictive or disease progression modeling of PD using clinical and biomarkers data. Neuroimaging, as another important information source for neurodegenerative disease, has also arisen considerable interests from the PD community. In this paper, we propose a deep learning method based on Graph Convolutional Networks (GCN) for fusing multiple modalities of brain images in relationship prediction which is useful for distinguishing PD cases from controls. On Parkinson’s Progression Markers Initiative (PPMI) cohort, our approach achieved $0.9537\pm 0.0587$ AUC, compared with $0.6443\pm 0.0223$ AUC achieved by traditional approaches such as PCA.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1805.08801

PDF

http://arxiv.org/pdf/1805.08801


Similar Posts

Comments