papers AI Learner
The Github is limit! Click to go to the new site.

The CASE Dataset of Candidate Spaces for Advert Implantation

2019-03-21
Soumyabrata Dev, Murhaf Hossari, Matthew Nicholson, Killian McCabe, Atul Nautiyal, Clare Conran, Jian Tang, Wei Xu, François Pitié

Abstract

With the advent of faster internet services and growth of multimedia content, we observe a massive growth in the number of online videos. The users generate these video contents at an unprecedented rate, owing to the use of smart-phones and other hand-held video capturing devices. This creates immense potential for the advertising and marketing agencies to create personalized content for the users. In this paper, we attempt to assist the video editors to generate augmented video content, by proposing candidate spaces in video frames. We propose and release a large-scale dataset of outdoor scenes, along with manually annotated maps for candidate spaces. We also benchmark several deep-learning based semantic segmentation algorithms on this proposed dataset.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1903.08943

PDF

http://arxiv.org/pdf/1903.08943


Similar Posts

Comments