papers AI Learner
The Github is limit! Click to go to the new site.

Convolutional Neural Networks for Multi-class Histopathology Image Classification


Abstract

There is a strong need for automated systems to improve diagnostic quality and reduce the analysis time in histopathology image processing. Automated detection and classification of pathological tissue characteristics with computer-aided diagnostic systems are a critical step in the early diagnosis and treatment of diseases. Once a pathology image is scanned by a microscope and loaded onto a computer, it can be used for automated detection and classification of diseases. In this study, the DenseNet-161 and ResNet-50 pre-trained CNN models have been used to classify digital histopathology patches into the corresponding whole slide images via transfer learning technique. The proposed pre-trained models were tested on grayscale and color histopathology images. The DenseNet-161 pre-trained model achieved a classification accuracy of 97.89% using grayscale images and the ResNet-50 model obtained the accuracy of 98.87% for color images. The proposed pre-trained models outperform state-of-the-art methods in all performance metrics to classify digital pathology patches into 24 categories.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1903.10035

PDF

http://arxiv.org/pdf/1903.10035


Similar Posts

Comments