papers AI Learner
The Github is limit! Click to go to the new site.

Domain Independent SVM for Transfer Learning in Brain Decoding

2019-03-26
Shuo Zhou, Wenwen Li, Christopher R. Cox, Haiping Lu

Abstract

Brain imaging data are important in brain sciences yet expensive to obtain, with big volume (i.e., large p) but small sample size (i.e., small n). To tackle this problem, transfer learning is a promising direction that leverages source data to improve performance on related, target data. Most transfer learning methods focus on minimizing data distribution mismatch. However, a big challenge in brain imaging is the large domain discrepancies in cognitive experiment designs and subject-specific structures and functions. A recent transfer learning approach minimizes domain dependence to learn common features across domains, via the Hilbert-Schmidt Independence Criterion (HSIC). Inspired by this method, we propose a new Domain Independent Support Vector Machine (DI-SVM) for transfer learning in brain condition decoding. Specifically, DI-SVM simultaneously minimizes the SVM empirical risk and the dependence on domain information via a simplified HSIC. We use public data to construct 13 transfer learning tasks in brain decoding, including three interesting multi-source transfer tasks. Experiments show that DI-SVM’s superior performance over eight competing methods on these tasks, particularly an improvement of more than 24% on multi-source transfer tasks.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1903.11020

PDF

http://arxiv.org/pdf/1903.11020


Similar Posts

Comments