papers AI Learner
The Github is limit! Click to go to the new site.

A Large-Scale Multi-Length Headline Corpus for Improving Length-Constrained Headline Generation Model Evaluation

2019-03-28
Yuta Hitomi, Yuya Taguchi, Hideaki Tamori, Ko Kikuta, Jiro Nishitoba, Naoaki Okazaki, Kentaro Inui, Manabu Okumura

Abstract

Browsing news articles on multiple devices is now possible. The lengths of news article headlines have precise upper bounds, dictated by the size of the display of the relevant device or interface. Therefore, controlling the length of headlines is essential when applying the task of headline generation to news production. However, because there is no corpus of headlines of multiple lengths for a given article, prior researches on controlling output length in headline generation have not discussed whether the evaluation of the setting that uses a single length reference can evaluate multiple length outputs appropriately. In this paper, we introduce two corpora (JNC and JAMUL) to confirm the validity of prior experimental settings and provide for the next step toward the goal of controlling output length in headline generation. The JNC provides common supervision data for headline generation. The JAMUL is a large-scale evaluation dataset for headlines of three different lengths composed by professional editors. We report new findings on these corpora; for example, while the longest length reference summary can appropriately evaluate the existing methods controlling output length, the methods do not manage the selection of words according to length constraint.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1903.11771

PDF

http://arxiv.org/pdf/1903.11771


Comments

Content