papers AI Learner
The Github is limit! Click to go to the new site.

A Study on the Global Convergence Time Complexity of Estimation of Distribution Algorithms

2019-03-29
R. Rastegar, M. R. Meybodi

Abstract

The Estimation of Distribution Algorithm is a new class of population based search methods in that a probabilistic model of individuals is estimated based on the high quality individuals and used to generate the new individuals. In this paper we compute 1) some upper bounds on the number of iterations required for global convergence of EDA 2) the exact number of iterations needed for EDA to converge to global optima.

Abstract (translated by Google)
URL

http://arxiv.org/abs/cs/0601132

PDF

http://arxiv.org/e-print/cs/0601132


Similar Posts

Comments