papers AI Learner
The Github is limit! Click to go to the new site.

Keyphrase Generation: A Text Summarization Struggle

2019-03-29
Erion Çano, Ondřej Bojar

Abstract

Authors’ keyphrases assigned to scientific articles are essential for recognizing content and topic aspects. Most of the proposed supervised and unsupervised methods for keyphrase generation are unable to produce terms that are valuable but do not appear in the text. In this paper, we explore the possibility of considering the keyphrase string as an abstractive summary of the title and the abstract. First, we collect, process and release a large dataset of scientific paper metadata that contains 2.2 million records. Then we experiment with popular text summarization neural architectures. Despite using advanced deep learning models, large quantities of data and many days of computation, our systematic evaluation on four test datasets reveals that the explored text summarization methods could not produce better keyphrases than the simpler unsupervised methods, or the existing supervised ones.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.00110

PDF

http://arxiv.org/pdf/1904.00110


Comments

Content