papers AI Learner
The Github is limit! Click to go to the new site.

Synchronized Detection and Recovery of Steganographic Messages with Adversarial Learning

2019-03-29
Haichao Shi, Xiao-Yu Zhang

Abstract

In this work, we mainly study the mechanism of learning the steganographic algorithm as well as combining the learning process with adversarial learning to learn a good steganographic algorithm. To handle the problem of embedding secret messages into the specific medium, we design a novel adversarial modules to learn the steganographic algorithm, and simultaneously train three modules called generator, discriminator and steganalyzer. Different from existing methods, the three modules are formalized as a game to communicate with each other. In the game, the generator and discriminator attempt to communicate with each other using secret messages hidden in an image. While the steganalyzer attempts to analyze whether there is a transmission of confidential information. We show that through unsupervised adversarial training, the adversarial model can produce robust steganographic solutions, which act like an encryption. Furthermore, we propose to utilize supervised adversarial training method to train a robust steganalyzer, which is utilized to discriminate whether an image contains secret information. Numerous experiments are conducted on publicly available dataset to demonstrate the effectiveness of the proposed method.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1801.10365

PDF

http://arxiv.org/pdf/1801.10365


Similar Posts

Comments