papers AI Learner
The Github is limit! Click to go to the new site.

Deep Industrial Espionage

2019-04-01
Samuel Albanie, James Thewlis, Sebastien Ehrhardt, Joao Henriques

Abstract

The theory of deep learning is now considered largely solved, and is well understood by researchers and influencers alike. To maintain our relevance, we therefore seek to apply our skills to under-explored, lucrative applications of this technology. To this end, we propose and Deep Industrial Espionage, an efficient end-to-end framework for industrial information propagation and productisation. Specifically, given a single image of a product or service, we aim to reverse-engineer, rebrand and distribute a copycat of the product at a profitable price-point to consumers in an emerging market—all within in a single forward pass of a Neural Network. Differently from prior work in machine perception which has been restricted to classifying, detecting and reasoning about object instances, our method offers tangible business value in a wide range of corporate settings. Our approach draws heavily on a promising recent arxiv paper until its original authors’ names can no longer be read (we use felt tip pen). We then rephrase the anonymised paper, add the word “novel” to the title, and submit it a prestigious, closed-access espionage journal who assure us that someday, we will be entitled to some fraction of their extortionate readership fees.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.01114

PDF

http://arxiv.org/pdf/1904.01114


Similar Posts

Comments