papers AI Learner
The Github is limit! Click to go to the new site.

A Large-Scale Comparison of Historical Text Normalization Systems

2019-04-03
Marcel Bollmann

Abstract

There is no consensus on the state-of-the-art approach to historical text normalization. Many techniques have been proposed, including rule-based methods, distance metrics, character-based statistical machine translation, and neural encoder–decoder models, but studies have used different datasets, different evaluation methods, and have come to different conclusions. This paper presents the largest study of historical text normalization done so far. We critically survey the existing literature and report experiments on eight languages, comparing systems spanning all categories of proposed normalization techniques, analysing the effect of training data quantity, and using different evaluation methods. The datasets and scripts are made publicly available.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1904.02036

PDF

https://arxiv.org/pdf/1904.02036


Comments

Content