papers AI Learner
The Github is limit! Click to go to the new site.

Multi-layered Spiking Neural Network with Target Timestamp Threshold Adaptation and STDP

2019-04-03
Pierre Falez, Pierre Tirilly, Ioan Marius Bilasco, Philippe Devienne, Pierre Boulet

Abstract

Spiking neural networks (SNNs) are good candidates to produce ultra-energy-efficient hardware. However, the performance of these models is currently behind traditional methods. Introducing multi-layered SNNs is a promising way to reduce this gap. We propose in this paper a new threshold adaptation system which uses a timestamp objective at which neurons should fire. We show that our method leads to state-of-the-art classification rates on the MNIST dataset (98.60%) and the Faces/Motorbikes dataset (99.46%) with an unsupervised SNN followed by a linear SVM. We also investigate the sparsity level of the network by testing different inhibition policies and STDP rules.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1904.01908

PDF

https://arxiv.org/pdf/1904.01908


Similar Posts

Comments