papers AI Learner
The Github is limit! Click to go to the new site.

Understanding the efficacy, reliability and resiliency of computer vision techniques for malware detection and future research directions


Abstract

My research lies in the intersection of security and machine learning. This overview summarizes one component of my research: combining computer vision with malware exploit detection for enhanced security solutions. I will present the perspectives of efficacy, reliability and resiliency to formulate threat detection as computer vision problems and develop state-of-the-art image-based malware classification. Representing malware binary as images provides a direct visualization of data samples, reduces the efforts for feature extraction, and consumes the whole binary for holistic structural analysis. Employing transfer learning of deep neural networks effective for large scale image classification to malware classification demonstrates superior classification efficacy compared with classical machine learning algorithms. To enhance reliability of these vision-based malware detectors, interpretation frameworks can be constructed on the malware visual representations and useful for extracting faithful explanation, so that security practitioners have confidence in the model before deployment. In cyber-security applications, we should always assume that a malware writer constantly modifies code to bypass detection. Addressing the resiliency of the malware detectors is equivalently important as efficacy and reliability. Via understanding the attack surfaces of machine learning models used for malware detection, we can greatly improve the robustness of the algorithms to combat malware adversaries in the wild. Finally I will discuss future research directions worth pursuing in this research community.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.10504

PDF

http://arxiv.org/pdf/1904.10504


Similar Posts

Comments