Abstract
This paper provides an overview of how recent advances in machine learning and the availability of data from earth observing satellites can dramatically improve our ability to automatically map croplands over long period and over large regions. It discusses three applications in the domain of crop monitoring where ML approaches are beginning to show great promise. For each application, it highlights machine learning challenges, proposed approaches, and recent results. The paper concludes with discussion of major challenges that need to be addressed before ML approaches will reach their full potential for this problem of great societal relevance.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1904.04329