papers AI Learner
The Github is limit! Click to go to the new site.

End-to-End Learning-Based Ultrasound Reconstruction

2019-04-09
Walter Simson, Rüdiger Göbl, Magdalini Paschali, Markus Krönke, Klemens Scheidhauer, Wolfgang Weber, Nassir Navab

Abstract

Ultrasound imaging is caught between the quest for the highest image quality, and the necessity for clinical usability. Our contribution is two-fold: First, we propose a novel fully convolutional neural network for ultrasound reconstruction. Second, a custom loss function tailored to the modality is employed for end-to-end training of the network. We demonstrate that training a network to map time-delayed raw data to a minimum variance ground truth offers performance increases in a clinical environment. In doing so, a path is explored towards improved clinically viable ultrasound reconstruction. The proposed method displays both promising image reconstruction quality and acquisition frequency when integrated for live ultrasound scanning. A clinical evaluation is conducted to verify the diagnostic usefulness of the proposed method in a clinical setting.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.04696

PDF

http://arxiv.org/pdf/1904.04696


Similar Posts

Comments