papers AI Learner
The Github is limit! Click to go to the new site.

Multimodal Style Transfer via Graph Cuts

2019-04-09
Yulun Zhang, Chen Fang, Yilin Wang, Zhaowen Wang, Zhe Lin, Yun Fu, Jimei Yang

Abstract

An assumption widely used in recent neural style transfer methods is that image styles can be described by global statics of deep features like Gram or covariance matrices. Alternative approaches have represented styles by decomposing them into local pixel or neural patches. Despite the recent progress, most existing methods treat the semantic patterns of style image uniformly, resulting unpleasing results on complex styles. In this paper, we introduce a more flexible and general universal style transfer technique: multimodal style transfer (MST). MST explicitly considers the matching of semantic patterns in content and style images. Specifically, the style image features are clustered into sub-style components, which are matched with local content features under a graph cut formulation. A reconstruction network is trained to transfer each sub-style and render the final stylized result. Extensive experiments demonstrate the superior effectiveness, robustness and flexibility of MST.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.04443

PDF

http://arxiv.org/pdf/1904.04443


Similar Posts

Comments