papers AI Learner
The Github is limit! Click to go to the new site.

Who Needs Words? Lexicon-Free Speech Recognition

2019-04-09
Tatiana Likhomanenko, Gabriel Synnaeve, Ronan Collobert

Abstract

Lexicon-free speech recognition naturally deals with the problem of out-of-vocabulary (OOV) words. In this paper, we show that character-based language models (LM) can perform as well as word-based LMs for speech recognition, in word error rates (WER), even without restricting the decoding to a lexicon. We study character-based LMs and show that convolutional LMs can effectively leverage large (character) contexts, which is key for good speech recognition performance downstream. We specifically show that the lexicon-free decoding performance (WER) on utterances with OOV words using character-based LMs is better than lexicon-based decoding, both with character or word-based LMs.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.04479

PDF

http://arxiv.org/pdf/1904.04479


Similar Posts

Comments