papers AI Learner
The Github is limit! Click to go to the new site.

C3AE: Exploring the Limits of Compact Model for Age Estimation

2019-04-10
Chao Zhang, Shuaicheng Liu, Xun Xu, Ce Zhu

Abstract

Age estimation is a classic learning problem in computer vision. Many larger and deeper CNNs have been proposed with promising performance, such as AlexNet, VggNet, GoogLeNet and ResNet. However, these models are not practical for the embedded/mobile devices. Recently, MobileNets and ShuffleNets have been proposed to reduce the number of parameters, yielding lightweight models. However, their representation has been weakened because of the adoption of depth-wise separable convolution. In this work, we investigate the limits of compact model for small-scale image and propose an extremely \textbf{C}ompact yet efficient \textbf{C}ascade \textbf{C}ontext-based \textbf{A}ge \textbf{E}stimation model(\textbf{C3AE}). This model possesses only 1/9 and 1/2000 parameters compared with MobileNets/ShuffleNets and VggNet, while achieves competitive performance. In particular, we re-define age estimation problem by two-points representation, which is implemented by a cascade model. Moreover, to fully utilize the facial context information, multi-branch CNN network is proposed to aggregate multi-scale context. Experiments are carried out on three age estimation datasets. The state-of-the-art performance on compact model has been achieved with a relatively large margin.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.05059

PDF

http://arxiv.org/pdf/1904.05059


Similar Posts

Comments