papers AI Learner
The Github is limit! Click to go to the new site.

Detecting Anemia from Retinal Fundus Images

2019-04-12
Akinori Mitani, Yun Liu, Abigail Huang, Greg S. Corrado, Lily Peng, Dale R. Webster, Naama Hammel, Avinash V. Varadarajan

Abstract

Despite its high prevalence, anemia is often undetected due to the invasiveness and cost of screening and diagnostic tests. Though some non-invasive approaches have been developed, they are less accurate than invasive methods, resulting in an unmet need for more accurate non-invasive methods. Here, we show that deep learning-based algorithms can detect anemia and quantify several related blood measurements using retinal fundus images both in isolation and in combination with basic metadata such as patient demographics. On a validation dataset of 11,388 patients from the UK Biobank, our algorithms achieved a mean absolute error of 0.63 g/dL (95% confidence interval (CI) 0.62-0.64) in quantifying hemoglobin concentration and an area under receiver operating characteristic curve (AUC) of 0.88 (95% CI 0.86-0.89) in detecting anemia. This work shows the potential of automated non-invasive anemia screening based on fundus images, particularly in diabetic patients, who may have regular retinal imaging and are at increased risk of further morbidity and mortality from anemia.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.06435

PDF

http://arxiv.org/pdf/1904.06435


Similar Posts

Comments