Abstract
Deep neural networks (DNNs) have shown an inherent vulnerability to adversarial examples which are maliciously crafted on real examples by attackers, aiming at making target DNNs misbehave. The threats of adversarial examples are widely existed in image, voice, speech, and text recognition and classification. Inspired by the previous work, researches on adversarial attacks and defenses in text domain develop rapidly. In order to make people have a general understanding about the field, this article presents a comprehensive review on adversarial examples in text. We analyze the advantages and shortcomings of recent adversarial examples generation methods and elaborate the efficiency and limitations on countermeasures. Finally, we discuss the challenges in adversarial texts and provide a research direction of this aspect.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1902.07285