papers AI Learner
The Github is limit! Click to go to the new site.

Improving Human Text Comprehension through Semi-Markov CRF-based Neural Section Title Generation

2019-04-15
Sebastian Gehrmann, Steven Layne, Franck Dernoncourt

Abstract

Titles of short sections within long documents support readers by guiding their focus towards relevant passages and by providing anchor-points that help to understand the progression of the document. The positive effects of section titles are even more pronounced when measured on readers with less developed reading abilities, for example in communities with limited labeled text resources. We, therefore, aim to develop techniques to generate section titles in low-resource environments. In particular, we present an extractive pipeline for section title generation by first selecting the most salient sentence and then applying deletion-based compression. Our compression approach is based on a Semi-Markov Conditional Random Field that leverages unsupervised word-representations such as ELMo or BERT, eliminating the need for a complex encoder-decoder architecture. The results show that this approach leads to competitive performance with sequence-to-sequence models with high resources, while strongly outperforming it with low resources. In a human-subject study across subjects with varying reading abilities, we find that our section titles improve the speed of completing comprehension tasks while retaining similar accuracy.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.07142

PDF

http://arxiv.org/pdf/1904.07142


Similar Posts

Comments