papers AI Learner
The Github is limit! Click to go to the new site.

Predicting human decisions with behavioral theories and machine learning

2019-04-15
Ori Plonsky, Reut Apel, Eyal Ert, Moshe Tennenholtz, David Bourgin, Joshua C. Peterson, Daniel Reichman, Thomas L. Griffiths, Stuart J. Russell, Evan C. Carter, James F. Cavanagh, Ido Erev

Abstract

Behavioral decision theories aim to explain human behavior. Can they help predict it? An open tournament for prediction of human choices in fundamental economic decision tasks is presented. The results suggest that integration of certain behavioral theories as features in machine learning systems provides the best predictions. Surprisingly, the most useful theories for prediction build on basic properties of human and animal learning and are very different from mainstream decision theories that focus on deviations from rational choice. Moreover, we find that theoretical features should be based not only on qualitative behavioral insights (e.g. loss aversion), but also on quantitative behavioral foresights generated by functional descriptive models (e.g. Prospect Theory). Our analysis prescribes a recipe for derivation of explainable, useful predictions of human decisions.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.06866

PDF

http://arxiv.org/pdf/1904.06866


Similar Posts

Comments