papers AI Learner
The Github is limit! Click to go to the new site.

Explainability in Human-Agent Systems

2019-04-17
Avi Rosenfeld, Ariella Richardson

Abstract

This paper presents a taxonomy of explainability in Human-Agent Systems. We consider fundamental questions about the Why, Who, What, When and How of explainability. First, we define explainability, and its relationship to the related terms of interpretability, transparency, explicitness, and faithfulness. These definitions allow us to answer why explainability is needed in the system, whom it is geared to and what explanations can be generated to meet this need. We then consider when the user should be presented with this information. Last, we consider how objective and subjective measures can be used to evaluate the entire system. This last question is the most encompassing as it will need to evaluate all other issues regarding explainability.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.08123

PDF

http://arxiv.org/pdf/1904.08123


Similar Posts

Comments