papers AI Learner
The Github is limit! Click to go to the new site.

Guided Anisotropic Diffusion and Iterative Learning for Weakly Supervised Change Detection

2019-04-17
Rodrigo Caye Daudt, Bertrand Le Saux, Alexandre Boulch, Yann Gousseau

Abstract

Large scale datasets created from user labels or openly available data have become crucial to provide training data for large scale learning algorithms. While these datasets are easier to acquire, the data are frequently noisy and unreliable, which is motivating research on weakly supervised learning techniques. In this paper we propose an iterative learning method that extracts the useful information from a large scale change detection dataset generated from open vector data to train a fully convolutional network which surpasses the performance obtained by naive supervised learning. We also propose the guided anisotropic diffusion algorithm, which improves semantic segmentation results using the input images as guides to perform edge preserving filtering, and is used in conjunction with the iterative training method to improve results.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.08208

PDF

http://arxiv.org/pdf/1904.08208


Similar Posts

Comments