papers AI Learner
The Github is limit! Click to go to the new site.

Question Guided Modular Routing Networks for Visual Question Answering

2019-04-17
Yanze Wu, Qiang Sun, Jianqi Ma, Bin Li, Yanwei Fu, Yao Peng, Xiangyang Xue

Abstract

Visual Question Answering (VQA) faces two major challenges: how to better fuse the visual and textual modalities and how to make the VQA model have the reasoning ability to answer more complex questions. In this paper, we address both challenges by proposing the novel Question Guided Modular Routing Networks (QGMRN). QGMRN can fuse the visual and textual modalities in multiple semantic levels which makes the fusion occur in a fine-grained way, it also can learn to reason by routing between the generic modules without additional supervision information or prior knowledge. The proposed QGMRN consists of three sub-networks: visual network, textual network and routing network. The routing network selectively executes each module in the visual network according to the pathway activated by the question features generated by the textual network. Experiments on the CLEVR dataset show that our model can outperform the state-of-the-art. Models and Codes will be released.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.08324

PDF

http://arxiv.org/pdf/1904.08324


Similar Posts

Comments