papers AI Learner
The Github is limit! Click to go to the new site.

Deep Parametric Shape Predictions using Distance Fields

2019-04-18
Dmitriy Smirnov, Matthew Fisher, Vladimir G. Kim, Richard Zhang, Justin Solomon

Abstract

Many tasks in graphics and vision demand machinery for converting shapes into representations with sparse sets of parameters; these representations facilitate rendering, editing, and storage. When the source data is noisy or ambiguous, however, artists and engineers often manually construct such representations, a tedious and potentially time-consuming process. While advances in deep learning have been successfully applied to noisy geometric data, the task of generating parametric shapes has so far been difficult for these methods. Hence, we propose a new framework for predicting parametric shape primitives using deep learning. We use distance fields to transition between shape parameters like control points and input data on a raster grid. We demonstrate efficacy on 2D and 3D tasks, including font vectorization and surface abstraction.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.08921

PDF

http://arxiv.org/pdf/1904.08921


Similar Posts

Comments