papers AI Learner
The Github is limit! Click to go to the new site.

Identifying Offensive Posts and Targeted Offense from Twitter

2019-04-19
Haimin Zhang, Debanjan Mahata, Simra Shahid, Laiba Mehnaz, Sarthak Anand, Yaman Singla, Rajiv Ratn Shah, Karan Uppal

Abstract

In this paper we present our approach and the system description for Sub-task A and Sub Task B of SemEval 2019 Task 6: Identifying and Categorizing Offensive Language in Social Media. Sub-task A involves identifying if a given tweet is offensive or not, and Sub Task B involves detecting if an offensive tweet is targeted towards someone (group or an individual). Our models for Sub-task A is based on an ensemble of Convolutional Neural Network, Bidirectional LSTM with attention, and Bidirectional LSTM + Bidirectional GRU, whereas for Sub-task B, we rely on a set of heuristics derived from the training data and manual observation. We provide detailed analysis of the results obtained using the trained models. Our team ranked 5th out of 103 participants in Sub-task A, achieving a macro F1 score of 0.807, and ranked 8th out of 75 participants in Sub Task B achieving a macro F1 of 0.695.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.09072

PDF

http://arxiv.org/pdf/1904.09072


Similar Posts

Comments