Abstract
Deep neural decision forest (NDF) achieved remarkable performance on various vision tasks via combining decision tree and deep representation learning. In this work, we first trace the decision-making process of this model and visualize saliency maps to understand which portion of the input influence it more for both classification and regression problems. We then apply NDF on a multi-task coordinate regression problem and demonstrate the distribution of routing probabilities, which is vital for interpreting NDF yet not shown for regression problems. The pre-trained model and code for visualization will be available at https://github.com/Nicholasli1995/VisualizingNDF
Abstract (translated by Google)
URL
http://arxiv.org/abs/1904.09201