papers AI Learner
The Github is limit! Click to go to the new site.

DeepCaps: Going Deeper with Capsule Networks

2019-04-21
Jathushan Rajasegaran, Vinoj Jayasundara, Sandaru Jayasekara, Hirunima Jayasekara, Suranga Seneviratne, Ranga Rodrigo

Abstract

Capsule Network is a promising concept in deep learning, yet its true potential is not fully realized thus far, providing sub-par performance on several key benchmark datasets with complex data. Drawing intuition from the success achieved by Convolutional Neural Networks (CNNs) by going deeper, we introduce DeepCaps1, a deep capsule network architecture which uses a novel 3D convolution based dynamic routing algorithm. With DeepCaps, we surpass the state-of-the-art results in the capsule network domain on CIFAR10, SVHN and Fashion MNIST, while achieving a 68% reduction in the number of parameters. Further, we propose a class-independent decoder network, which strengthens the use of reconstruction loss as a regularization term. This leads to an interesting property of the decoder, which allows us to identify and control the physical attributes of the images represented by the instantiation parameters.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.09546

PDF

http://arxiv.org/pdf/1904.09546


Similar Posts

Comments